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Artificial Intelligence

“I believe there is no deep difference between what can be achieved by a biological brain
and what can be achieved by a computer. It, therefore, follows that computers can, in
theory, emulate human intelligence – and exceed it.”

Stephen Hawking (2016)
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Outline of Presentation

Motivation
Crisis Index as (another) financial stability indicator.

Description of Data and Machine Learning
Crisis data from Romer and Romer (AER, 2017); [Laeven and Valencia (IMF, 2013)].
Textual data from the OECD Economic Outlook, [Thomson Reuters News Archives],
and IMF Article IVs.

Analysis
Out-of-sample identification (Nowcasting) and combining models.
Local projections and forecasting.
COVID-19 Results: U.S. was in a financial crisis?

Conclusion
Text and machine learning help, especially in identifying more severe crisis periods.
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Financial Conditions/Stress and Vulnerability Indexes

Financial conditions indexes / financial stress indexes
Provide useful measures of tight conditions or financial stress in the financial system.
Chicago National Financial Conditions Index (NFCI) (Brave and Butters (2012)).
Systemic Financial Stress Index (Duprey, Klaus, and Peltonen (2017)).

Financial vulnerability indexes
Provide indicators of buildup of vulnerabilities that can potentially lead to crises.
Useful for figuring out when to activate counter-cyclical capital buffers (CCyB).
Credit-to-GDP Gap (Drehmann and Juselius (2014)).
AKLPW and LPS Indicators (Aikman et al. (2017), Lee et al. (2020)).
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Volatility, LPS Index, and Financial Crises in the U.S.
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Crisis Index

Provides information on whether a country is in a crisis state (or not), and does this in
a consistent/objective manner.

Useful for input into various policies.
Crisis management.
Macroprudential (whether to set/maintain zero or low CCyB).
Monetary policy.
Fiscal policy.
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CDLS Crisis Index and Financial Crises
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Problems with Expert-Identified Crisis Data

Slow to update

Romer and Romer (AER, 2017) still only goes to 2012 (and no sign of an update ever
coming).
Laeven and Valencia (2020) goes to 2017, updates more frequently.

Vague determinations
Some crisis definitions have a list of criteria, some are simply “determined by country
experts.”
Start dates are sometimes vague - monthly vs. annual
End dates rarely have any explanation.

Look-behind bias
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Romer and Romer Crises - Narrative Determination
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Text Useful for Understanding Macro-financial Series or Crises?

Updates quickly.

Easy to see which words or phrases are driving determinations of crises.

Use contemporary, publicly available sources available for many countries.

Other research, Angelico et al. (2019), Kalamara et al. (2019), and Cerchiello et al.
(2017), find it useful too!
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Text Sources

OECD Economic Outlook
Begins in 1967 with more countries in 1980; semi-annual releases.
Main text source used in Romer and Romer (AER, 2017).

Thomson Reuters News Archives
Begins in 1996; to-the-minute releases (we aggregate monthly).
Wide range of countries covered (64); about 10 million articles.

IMF Article IVs
Begins in 1984; release times vary.
Alternate source used in Romer and Romer (AER, 2017).
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Sentiment Scores

Based on Financial Stability Dictionary, Correa et al. (2017).

Calculate (Positive – Negative Words)/(Positive + Negative Words).
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Sentiment Analysis

TRNA Articles

OECD Economic Outlooks

IMF Article IVs
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Burning a Dictionary

Objective
Try to maximize out-of-sample predictive power.
Do not want particular crisis-specific words like “Asian crisis” or “mortgage backed
securities” to drive results.

“Burn” Dictionary from the main OECD text source
Select the first 14 years (1967-1980) of text data.
Eliminate most/least frequently used words.
What remains is our OECD-based dictionary of 881 terms (unigrams and bigrams).
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Data Set-up

Tokenize 
text

Remove 
stopwords

Keep 
words in 
dictionary

Make burn 
dictionary

Stemming and 
Lemmatization

Create 
document 
feature 
matrix

"The expansion slowed down 
considerably in the second half of 
the year, influenced by the weaker 
trend in the United States and 
tighter policies at home."

"The", "expansion", 
"slowed", "down", 
"considerably", "in", 
"the", "second", "half", 
"of", "the",  "year", 
"influenced",   "by", "the", 
"weaker", "trend", "in", 
"the", "United", "States", 
"and", "tighter", 
"policies", "at",  "home" 

"expansion", 
"slowed", "down", 
"considerably", 
"second", "half“, 
"year", 
"influenced", 
"weaker", "trend", 
"United", "States", 
"tighter", "policies", 
"home" 

"expans", "slow", 
"down", "consider", 
"second", "half"         
"year", "influenc", 
"weaker", "trend", 
"Unite", "State", 
"tighter", "polici", 
"home" 

"expans": 1,
"slow": 1, 
"down": 1, 
"consider": 1,
"second": 1,
"half": 1,  
"year": 1 , 
"influenc": 1, 
"weaker": 1, 
"trend": 1, 
"Unite“: 1, 
"State“: 1, 
"tighter“: 1, 
"polici“: 1, 
"home“: 1

Select the first 14 years (1967‐1980) of 
OECD text data and keep only terms that 
1. show up across all the seven 

countries in that period 
2. show up more than 50 times in that 

period

Step 1 Step 2 Step 3

Step 4

Step 5

Step 0
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Supervised Machine Learning

Avoiding data leakage
Given the time-series nature, even validation set respects time (for determining
hyper-parameters).
We also split training set vs. testing set at 2004 for out-of-sample analysis.

“Chunk” method
Up to 2004: Training data (for creating and tuning the models).
Post 2004: Testing data (for creating ROC curves and performance metrics).

“Expanding” method
First train up to 2004.
Predict one period ahead, then retrain with that new period, and repeat.
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Machine Learning Models

Support Vector Machines (SVMs).

Random Forests.

GLMNET - Elastic Net/Ridge/Lasso.

Neural Networks.

Adaptive Boosted Forests, Extreme Random Forests, Naive Bayes, KNN, etc.
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Simple Benchmark Models

Simple bivariate logistical models

Realized volatility calculated from daily stock return data.
Scaled by country.
Incorporated in many financial conditions/stress indexes.
Has long histories for many countries.

Sentiment scores.
A simple textual analysis method that often yields promising results.
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Out-of-sample Nowcasting Results

Variable Importance (in-sample)

ROC Comparison of Models (out-of-sample)

Confusion Matrix (out-of-sample)

LIME (out-of-sample)
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Variable Importance Results - 5 (or more severe) Crises on OECD Text

SVM Radial
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ROC Results - 5 (or more severe) Crises on OECD Text

Text-only model performs
pretty well out of sample
(2005 to 2012).

Average model (based on
simple averages of model
outputs) performs
marginally better.
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Confusion Matrix - 5 (or more severe) Crises on OECD Text
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Out-of-sample Mexico - 5 (or more severe) Crises on OECD Text
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LIME Example - 5 (or more severe) Crises on OECD Text

Local Interpretable
Model-agnostic Explanations
(LIME) is based on local
approximations of feature
weights.

Shapley values allow inference
testing - Joseph (2019).

Provides more intuition than
Variable Importance.
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LIME Results - 5 (or more severe) Crises on OECD Text

Top average feature weights
suggest that mentions of
“bank” and “loan” increases
probability of a crisis between
0.5 and 1 percentage point, on
average.

Mentions of “strong” decreases
the crisis probability.
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Out-of-sample Results - Different Degrees of Crises on OECD Text
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LIME Results - Different Degrees of Crises on OECD Text
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Variable Importance and ROC Curves - LV Crises on TRNA Text

Random Forest

0 25 50 75 100

crisis
currency

dollar
contribute

loan
stimulus

local
factor

recession
real
help

package
recent

weaken
situation
recovery

money
sharp

scheme
problem

SVM Radial

0 25 50 75 100

dollar
currency

loan
crisis

inflow
foreign

base
domestic

fund
weaken

recession
factor

liquidity
problem
external

local
finance

adjustment
sharp

measure

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

1 − Specificity (FPR)
S

en
si

tiv
ity

 (
T

P
R

)

Average Text Model

Averaged Model

Sentiment Model

Volatility Model

Area under the Curves:
Average Text Model: 0.6298

Volatility Model: 0.7632
Sentiment Model: 0.7516
Averaged Model: 0.7939
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Confusion Matrix - LV Crises on TRNA Text
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Variable Importance and ROC Curves - LV Crises on IMF Text

Random Forest
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Confusion Matrix - LV Crises on IMF Text
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Super Combination Model

OECD Models
1. Text Model SVM‐Radial
2. Text Model RF

• Trained on Romer

TRNA Models
3. Average Text Model
4. Volatility Model
5. Sentiment Model

• Trained on LV Banking

Predicting Romer 
5 (or more severe) Crisis

IMF Article IVs
6.   Average Text Model

• Trained on LV Banking
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ROC Results - Super Combination Model

Combining text can boost
AUROC to 0.9144.

This is a prototype.
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TRNA − LV Banking − Sentiment: 0.8102

IMF NA Deleted − LV Banking − Avg. Text: 0.7181
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Combining Textual Sources
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Local Projections from Different Crises Definitions
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Expanding Window Results - 5 (or more severe) Crises on TRNA
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Credit Disruption and Financial Crisis Probabilities during COVID-19
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Credit Disruption and Financial Crisis Probabilities during COVID-19
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LIME Example, U.S. - 5 (or more severe) Crises on OECD Text
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Other Related Work

Looked at continuous machine learning models - works great too.

Looked at predicting the beginning of a crisis - this is harder to do, but still good
results.

Applications to other macro-financial variables are endless.
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Conclusion

Textual data and machine learning provide information not captured by volatility or
other data.

May be particularly useful in detecting and confirming more severe crises.

Different text sources provide different information.

In particular, TRNA has more forward-looking components.

Major caveat is that future crises may look quite different.
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Future Romers
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